Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.

Identifieur interne : 000D92 ( Main/Exploration ); précédent : 000D91; suivant : 000D93

The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.

Auteurs : Erwin Swinnen [États-Unis] ; Tobias Wilms ; Jolanta Idkowiak-Baldys ; Bart Smets ; Pepijn De Snijder ; Sabina Accardo ; Ruben Ghillebert ; Karin Thevissen ; Bruno Cammue ; Dirk De Vos ; Jacek Bielawski ; Yusuf A. Hannun ; Joris Winderickx

Source :

RBID : pubmed:24196832

Descripteurs français

English descriptors

Abstract

The Saccharomyces cerevisiae protein kinase Sch9 is an in vitro and in vivo effector of sphingolipid signaling. This study examines the link between Sch9 and sphingolipid metabolism in S. cerevisiae in vivo based on the observation that the sch9Δ mutant displays altered sensitivity to different inhibitors of sphingolipid metabolism, namely myriocin and aureobasidin A. Sphingolipid profiling indicates that sch9Δ cells have increased levels of long-chain bases and long-chain base-1 phosphates, decreased levels of several species of (phyto)ceramides, and altered ratios of complex sphingolipids. We show that the target of rapamycin complex 1-Sch9 signaling pathway functions to repress the expression of the ceramidase genes YDC1 and YPC1, thereby revealing, for the first time in yeast, a nutrient-dependent transcriptional mechanism involved in the regulation of sphingolipid metabolism. In addition, we establish that Sch9 affects the activity of the inositol phosphosphingolipid phospholipase C, Isc1, which is required for ceramide production by hydrolysis of complex sphingolipids. Given that sphingolipid metabolites play a crucial role in the regulation of stress tolerance and longevity of yeast cells, our data provide a model in which Sch9 regulates the latter phenotypes by acting not only as an effector but also as a regulator of sphingolipid metabolism.

DOI: 10.1091/mbc.E13-06-0340
PubMed: 24196832
PubMed Central: PMC3873890


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Swinnen, Erwin" sort="Swinnen, Erwin" uniqKey="Swinnen E" first="Erwin" last="Swinnen">Erwin Swinnen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wilms, Tobias" sort="Wilms, Tobias" uniqKey="Wilms T" first="Tobias" last="Wilms">Tobias Wilms</name>
</author>
<author>
<name sortKey="Idkowiak Baldys, Jolanta" sort="Idkowiak Baldys, Jolanta" uniqKey="Idkowiak Baldys J" first="Jolanta" last="Idkowiak-Baldys">Jolanta Idkowiak-Baldys</name>
</author>
<author>
<name sortKey="Smets, Bart" sort="Smets, Bart" uniqKey="Smets B" first="Bart" last="Smets">Bart Smets</name>
</author>
<author>
<name sortKey="De Snijder, Pepijn" sort="De Snijder, Pepijn" uniqKey="De Snijder P" first="Pepijn" last="De Snijder">Pepijn De Snijder</name>
</author>
<author>
<name sortKey="Accardo, Sabina" sort="Accardo, Sabina" uniqKey="Accardo S" first="Sabina" last="Accardo">Sabina Accardo</name>
</author>
<author>
<name sortKey="Ghillebert, Ruben" sort="Ghillebert, Ruben" uniqKey="Ghillebert R" first="Ruben" last="Ghillebert">Ruben Ghillebert</name>
</author>
<author>
<name sortKey="Thevissen, Karin" sort="Thevissen, Karin" uniqKey="Thevissen K" first="Karin" last="Thevissen">Karin Thevissen</name>
</author>
<author>
<name sortKey="Cammue, Bruno" sort="Cammue, Bruno" uniqKey="Cammue B" first="Bruno" last="Cammue">Bruno Cammue</name>
</author>
<author>
<name sortKey="De Vos, Dirk" sort="De Vos, Dirk" uniqKey="De Vos D" first="Dirk" last="De Vos">Dirk De Vos</name>
</author>
<author>
<name sortKey="Bielawski, Jacek" sort="Bielawski, Jacek" uniqKey="Bielawski J" first="Jacek" last="Bielawski">Jacek Bielawski</name>
</author>
<author>
<name sortKey="Hannun, Yusuf A" sort="Hannun, Yusuf A" uniqKey="Hannun Y" first="Yusuf A" last="Hannun">Yusuf A. Hannun</name>
</author>
<author>
<name sortKey="Winderickx, Joris" sort="Winderickx, Joris" uniqKey="Winderickx J" first="Joris" last="Winderickx">Joris Winderickx</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24196832</idno>
<idno type="pmid">24196832</idno>
<idno type="doi">10.1091/mbc.E13-06-0340</idno>
<idno type="pmc">PMC3873890</idno>
<idno type="wicri:Area/Main/Corpus">000F37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F37</idno>
<idno type="wicri:Area/Main/Curation">000F37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F37</idno>
<idno type="wicri:Area/Main/Exploration">000F37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Swinnen, Erwin" sort="Swinnen, Erwin" uniqKey="Swinnen E" first="Erwin" last="Swinnen">Erwin Swinnen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wilms, Tobias" sort="Wilms, Tobias" uniqKey="Wilms T" first="Tobias" last="Wilms">Tobias Wilms</name>
</author>
<author>
<name sortKey="Idkowiak Baldys, Jolanta" sort="Idkowiak Baldys, Jolanta" uniqKey="Idkowiak Baldys J" first="Jolanta" last="Idkowiak-Baldys">Jolanta Idkowiak-Baldys</name>
</author>
<author>
<name sortKey="Smets, Bart" sort="Smets, Bart" uniqKey="Smets B" first="Bart" last="Smets">Bart Smets</name>
</author>
<author>
<name sortKey="De Snijder, Pepijn" sort="De Snijder, Pepijn" uniqKey="De Snijder P" first="Pepijn" last="De Snijder">Pepijn De Snijder</name>
</author>
<author>
<name sortKey="Accardo, Sabina" sort="Accardo, Sabina" uniqKey="Accardo S" first="Sabina" last="Accardo">Sabina Accardo</name>
</author>
<author>
<name sortKey="Ghillebert, Ruben" sort="Ghillebert, Ruben" uniqKey="Ghillebert R" first="Ruben" last="Ghillebert">Ruben Ghillebert</name>
</author>
<author>
<name sortKey="Thevissen, Karin" sort="Thevissen, Karin" uniqKey="Thevissen K" first="Karin" last="Thevissen">Karin Thevissen</name>
</author>
<author>
<name sortKey="Cammue, Bruno" sort="Cammue, Bruno" uniqKey="Cammue B" first="Bruno" last="Cammue">Bruno Cammue</name>
</author>
<author>
<name sortKey="De Vos, Dirk" sort="De Vos, Dirk" uniqKey="De Vos D" first="Dirk" last="De Vos">Dirk De Vos</name>
</author>
<author>
<name sortKey="Bielawski, Jacek" sort="Bielawski, Jacek" uniqKey="Bielawski J" first="Jacek" last="Bielawski">Jacek Bielawski</name>
</author>
<author>
<name sortKey="Hannun, Yusuf A" sort="Hannun, Yusuf A" uniqKey="Hannun Y" first="Yusuf A" last="Hannun">Yusuf A. Hannun</name>
</author>
<author>
<name sortKey="Winderickx, Joris" sort="Winderickx, Joris" uniqKey="Winderickx J" first="Joris" last="Winderickx">Joris Winderickx</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Ceramides (biosynthesis)</term>
<term>Depsipeptides (pharmacology)</term>
<term>Drug Resistance, Fungal (MeSH)</term>
<term>Fatty Acids, Monounsaturated (pharmacology)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Microbial Viability (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sphingolipids (metabolism)</term>
<term>Sphingosine (analogs & derivatives)</term>
<term>Sphingosine (pharmacology)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Type C Phospholipases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides gras monoinsaturés (pharmacologie)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Céramides (biosynthèse)</term>
<term>Depsipeptides (pharmacologie)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Résistance des champignons aux médicaments (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Sphingosine (analogues et dérivés)</term>
<term>Sphingosine (pharmacologie)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Tests de sensibilité microbienne (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
<term>Type C Phospholipases (métabolisme)</term>
<term>Viabilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Sphingosine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ceramides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sphingolipids</term>
<term>Type C Phospholipases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Depsipeptides</term>
<term>Fatty Acids, Monounsaturated</term>
<term>Sphingosine</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Sphingosine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Céramides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Sphingolipides</term>
<term>Type C Phospholipases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides gras monoinsaturés</term>
<term>Antifongiques</term>
<term>Depsipeptides</term>
<term>Sphingosine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Knockout Techniques</term>
<term>Microbial Sensitivity Tests</term>
<term>Microbial Viability</term>
<term>Protein Transport</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Résistance des champignons aux médicaments</term>
<term>Techniques de knock-out de gènes</term>
<term>Tests de sensibilité microbienne</term>
<term>Transcription génétique</term>
<term>Transport des protéines</term>
<term>Viabilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Saccharomyces cerevisiae protein kinase Sch9 is an in vitro and in vivo effector of sphingolipid signaling. This study examines the link between Sch9 and sphingolipid metabolism in S. cerevisiae in vivo based on the observation that the sch9Δ mutant displays altered sensitivity to different inhibitors of sphingolipid metabolism, namely myriocin and aureobasidin A. Sphingolipid profiling indicates that sch9Δ cells have increased levels of long-chain bases and long-chain base-1 phosphates, decreased levels of several species of (phyto)ceramides, and altered ratios of complex sphingolipids. We show that the target of rapamycin complex 1-Sch9 signaling pathway functions to repress the expression of the ceramidase genes YDC1 and YPC1, thereby revealing, for the first time in yeast, a nutrient-dependent transcriptional mechanism involved in the regulation of sphingolipid metabolism. In addition, we establish that Sch9 affects the activity of the inositol phosphosphingolipid phospholipase C, Isc1, which is required for ceramide production by hydrolysis of complex sphingolipids. Given that sphingolipid metabolites play a crucial role in the regulation of stress tolerance and longevity of yeast cells, our data provide a model in which Sch9 regulates the latter phenotypes by acting not only as an effector but also as a regulator of sphingolipid metabolism. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24196832</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>196-211</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E13-06-0340</ELocationID>
<Abstract>
<AbstractText>The Saccharomyces cerevisiae protein kinase Sch9 is an in vitro and in vivo effector of sphingolipid signaling. This study examines the link between Sch9 and sphingolipid metabolism in S. cerevisiae in vivo based on the observation that the sch9Δ mutant displays altered sensitivity to different inhibitors of sphingolipid metabolism, namely myriocin and aureobasidin A. Sphingolipid profiling indicates that sch9Δ cells have increased levels of long-chain bases and long-chain base-1 phosphates, decreased levels of several species of (phyto)ceramides, and altered ratios of complex sphingolipids. We show that the target of rapamycin complex 1-Sch9 signaling pathway functions to repress the expression of the ceramidase genes YDC1 and YPC1, thereby revealing, for the first time in yeast, a nutrient-dependent transcriptional mechanism involved in the regulation of sphingolipid metabolism. In addition, we establish that Sch9 affects the activity of the inositol phosphosphingolipid phospholipase C, Isc1, which is required for ceramide production by hydrolysis of complex sphingolipids. Given that sphingolipid metabolites play a crucial role in the regulation of stress tolerance and longevity of yeast cells, our data provide a model in which Sch9 regulates the latter phenotypes by acting not only as an effector but also as a regulator of sphingolipid metabolism. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Swinnen</LastName>
<ForeName>Erwin</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilms</LastName>
<ForeName>Tobias</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Idkowiak-Baldys</LastName>
<ForeName>Jolanta</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smets</LastName>
<ForeName>Bart</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Snijder</LastName>
<ForeName>Pepijn</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Accardo</LastName>
<ForeName>Sabina</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ghillebert</LastName>
<ForeName>Ruben</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thevissen</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cammue</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Vos</LastName>
<ForeName>Dirk</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bielawski</LastName>
<ForeName>Jacek</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hannun</LastName>
<ForeName>Yusuf A</ForeName>
<Initials>YA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Winderickx</LastName>
<ForeName>Joris</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA138313</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 CA097132</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM63265</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM063265</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR017677</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002518">Ceramides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047630">Depsipeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005229">Fatty Acids, Monounsaturated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>127785-64-2</RegistryNumber>
<NameOfSubstance UI="C071398">aureobasidin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C530964">SCH9 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.-</RegistryNumber>
<NameOfSubstance UI="C419391">ISC1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.-</RegistryNumber>
<NameOfSubstance UI="D010738">Type C Phospholipases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GIN46U9Q2Q</RegistryNumber>
<NameOfSubstance UI="C012491">phytosphingosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>NGZ37HRE42</RegistryNumber>
<NameOfSubstance UI="D013110">Sphingosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YRM4E8R9ST</RegistryNumber>
<NameOfSubstance UI="C001996">thermozymocidin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002518" MajorTopicYN="N">Ceramides</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047630" MajorTopicYN="N">Depsipeptides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005229" MajorTopicYN="N">Fatty Acids, Monounsaturated</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013110" MajorTopicYN="N">Sphingosine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010738" MajorTopicYN="N">Type C Phospholipases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24196832</ArticleId>
<ArticleId IdType="pii">mbc.E13-06-0340</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E13-06-0340</ArticleId>
<ArticleId IdType="pmc">PMC3873890</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 1996 Feb 15;10(4):382-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8600023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 11;272(15):9809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 25;272(17):11369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1997 Apr 1;340(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9126282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1997 Aug;143 ( Pt 8):2627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9274016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Sep 26;272(39):24154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 30;273(5):2829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9446592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Biochem Physiol. 1959 Aug;37(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13671378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(3):862-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 25;280(8):7170-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):22679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Jul;48(1):18-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15926040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2005 Jun;37(3):143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 17;281(7):4013-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Mar 20;580(7):1903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16527275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Oct;12(5):833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Nov 1;147(3):545-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 May;44(5):1174-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10770748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jun;20(12):4411-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10825204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Jun 6;39(22):6660-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10828984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Dec;156(4):1519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 15;275(50):39793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 21;276(38):35614-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11468289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Jul;81(2):515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 12;286(32):27855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21693702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Nov;121(11):4222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22045572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Nov 15;10(22):3973-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22071627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Feb;8(2):e1002493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Mar 2;148(5):988-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22385963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jun;23(12):2388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2006 Nov;45(6):447-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16730802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Dec;1758(12):2016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16996023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2007 Mar;46(2):126-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):4180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Oct 15;6(20):2445-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Nov;1768(11):2849-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17880915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2008 May;49(5):922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2008;49:413-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18751921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2008 Dec;8(8):1276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18759743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 17;284(16):10818-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 1;284(18):11930-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19254955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 May;5(5):e1000467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Feb;56(1):1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2010 Feb;303(2):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20030721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Jan;1(1):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2010;6:349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20160710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 25;463(7284):1048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20182505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2010;688:217-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20919657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):267-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Jun 8;13(6):668-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 24;286(25):22017-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 May 15;125(Pt 10):2428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol B Biochem Mol Biol. 2012 Sep;163(1):26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22613819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Dec;86(5):1246-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23062268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e48571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23226203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Apr;1831(4):726-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23286903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Mar;24(6):870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 14;288(24):17272-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2001 Dec;15(14):2669-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 26;277(30):26796-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2002 Aug;27(7-8):601-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Dec;46(5):1319-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Dec 24;41(51):15105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12484746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):284-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Mar;19(3):865-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2008 May;49(5):909-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 19;279(12):11537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2004 Feb;82(1):45-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15052327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Oct;150(Pt 10):3289-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 May;2(5):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3290050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Jun 15;211(2):396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7794249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1995 Dec;39(12):2765-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8593016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Accardo, Sabina" sort="Accardo, Sabina" uniqKey="Accardo S" first="Sabina" last="Accardo">Sabina Accardo</name>
<name sortKey="Bielawski, Jacek" sort="Bielawski, Jacek" uniqKey="Bielawski J" first="Jacek" last="Bielawski">Jacek Bielawski</name>
<name sortKey="Cammue, Bruno" sort="Cammue, Bruno" uniqKey="Cammue B" first="Bruno" last="Cammue">Bruno Cammue</name>
<name sortKey="De Snijder, Pepijn" sort="De Snijder, Pepijn" uniqKey="De Snijder P" first="Pepijn" last="De Snijder">Pepijn De Snijder</name>
<name sortKey="De Vos, Dirk" sort="De Vos, Dirk" uniqKey="De Vos D" first="Dirk" last="De Vos">Dirk De Vos</name>
<name sortKey="Ghillebert, Ruben" sort="Ghillebert, Ruben" uniqKey="Ghillebert R" first="Ruben" last="Ghillebert">Ruben Ghillebert</name>
<name sortKey="Hannun, Yusuf A" sort="Hannun, Yusuf A" uniqKey="Hannun Y" first="Yusuf A" last="Hannun">Yusuf A. Hannun</name>
<name sortKey="Idkowiak Baldys, Jolanta" sort="Idkowiak Baldys, Jolanta" uniqKey="Idkowiak Baldys J" first="Jolanta" last="Idkowiak-Baldys">Jolanta Idkowiak-Baldys</name>
<name sortKey="Smets, Bart" sort="Smets, Bart" uniqKey="Smets B" first="Bart" last="Smets">Bart Smets</name>
<name sortKey="Thevissen, Karin" sort="Thevissen, Karin" uniqKey="Thevissen K" first="Karin" last="Thevissen">Karin Thevissen</name>
<name sortKey="Wilms, Tobias" sort="Wilms, Tobias" uniqKey="Wilms T" first="Tobias" last="Wilms">Tobias Wilms</name>
<name sortKey="Winderickx, Joris" sort="Winderickx, Joris" uniqKey="Winderickx J" first="Joris" last="Winderickx">Joris Winderickx</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Swinnen, Erwin" sort="Swinnen, Erwin" uniqKey="Swinnen E" first="Erwin" last="Swinnen">Erwin Swinnen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24196832
   |texte=   The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24196832" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020